Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Respir Res ; 25(1): 156, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581044

RESUMO

BACKGROUND: Lung cancers represent the main cause of cancer related-death worldwide. Recently, immunotherapy alone or in combination with chemotherapy has deeply impacted the therapeutic care leading to an improved overall survival. However, relapse will finally occur, with no efficient second line treatment so far. New therapies development based on the comprehension of resistance mechanisms is necessary. However, the difficulties to obtain tumor samples before and after first line treatment hamper to clearly understand the consequence of these molecules on tumor cells and also to identify adapted second line therapies. METHODS: To overcome this difficulty, we developed multicellular tumor spheroids (MCTS) using characterized Non-Small Cell Lung Cancer (NSCLC) cell lines, monocytes from healthy donors and fibroblasts. MCTS were treated with carboplatin-paclitaxel or -gemcitabine combinations according to clinical administration schedules. The treatments impact was studied using cell viability assay, histological analyses, 3'RNA sequencing, real-time PCR, flow cytometry and confocal microscopy. RESULTS: We showed that treatments induced a decrease in cell viability and strong modifications in the transcriptomic profile notably at the level of pathways involved in DNA damage repair and cell cycle. Interestingly, we also observed a modification of genes expression considered as hallmarks of response to immune check point inhibitors and immunogenicity, particularly an increase in CD274 gene expression, coding for PD-L1. This result was validated at the protein level and shown to be restricted to tumor cells on MCTS containing fibroblasts and macrophages. This increase was also observed in an additional cell line, expressing low basal CD274 level. CONCLUSIONS: This study shows that MCTS are interesting models to study the impact of first line therapies using conditions close to clinical practice and also to identify more adapted second line or concomitant therapies for lung cancer treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Recidiva Local de Neoplasia , Esferoides Celulares , Paclitaxel/uso terapêutico , Antígeno B7-H1
2.
Cancer Immunol Immunother ; 72(10): 3309-3322, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37466668

RESUMO

Antitumor virotherapy stimulates the antitumor immune response during tumor cell lysis induced by oncolytic viruses (OVs). OV can be modified to express additional transgenes that enhance their therapeutic potential. In this study, we armed the spontaneously oncolytic Schwarz strain of measles viruses (MVs) with the gene encoding the cancer/testis antigen NY-ESO-1 to obtain MVny. We compared MV and MVny oncolytic activity and ability to induce NY-ESO-1 expression in six human melanoma cell lines. After MVny infection, we measured the capacity of melanoma cells to present NY-ESO-1 peptides to CD4 + and CD8 + T cell clones specific for this antigen. We assessed the ability of MVny to induce NY-ESO-1 expression and presentation in monocyte-derived dendritic cells (DCs). Our results show that MVny and MV oncolytic activity are similar with a faster cell lysis induced by MVny. We also observed that melanoma cell lines and DC expressed the NY-ESO-1 protein after MVny infection. In addition, MVny-infected melanoma cells and DCs were able to stimulate NY-ESO-1-specific CD4 + and CD8 + T cells. Finally, MVny was able to induce DC maturation. Altogether, these results show that MVny could be an interesting candidate to stimulate NY-ESO-1-specific T cells in melanoma patients with NY-ESO-1-expressing tumor cells.


Assuntos
Sarampo , Melanoma , Vírus Oncolíticos , Masculino , Humanos , Vírus Oncolíticos/genética , Proteínas de Membrana , Vírus do Sarampo/genética , Melanoma/metabolismo , Linfócitos T CD8-Positivos , Antígenos de Neoplasias , Anticorpos/metabolismo , Células Dendríticas , Sarampo/metabolismo
3.
Front Cell Dev Biol ; 11: 1185311, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37287456

RESUMO

Pregnancy is a state of multiple physiological adaptations. Since methylation of DNA is an epigenetic mechanism that regulates gene expression and contributes to adaptive phenotypic variations, we investigated methylation changes in maternal blood of a longitudinal cohort of pregnant women from the first trimester of gestation to the third. Interestingly, during pregnancy, we found a gain of methylation in genes involved in morphogenesis, such as ezrin, while we identified a loss of methylation in genes promoting maternal-infant bonding (AVP and PPP1R1B). Together, our results provide insights into the biological mechanisms underlying physiological adaptations during pregnancy.

4.
Pharmacol Ther ; 242: 108347, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36642389

RESUMO

While new targeted therapies have considerably changed the treatment and prognosis of non-small cell lung cancer (NSCLC), they are frequently unsuccessful due to primary or acquired resistances. Chemoresistance is a complex process that combines cancer cell intrinsic mechanisms including molecular and genetic abnormalities, aberrant interactions within the tumor microenvironment, and the pharmacokinetic characteristics of each molecule. From a pharmacological point of view, two levers could improve the response to treatment: (i) developing tools to predict the response to chemo- and targeted therapies and (ii) gaining a better understanding of the influence of the tumor microenvironment. Both personalized medicine approaches require the identification of relevant experimental models and biomarkers to understand and fight against chemoresistance mechanisms. After describing the main therapies in NSCLC, the scope of this review will be to identify and to discuss relevant in vitro and ex vivo experimental models that are able to mimic tumors. In addition, the interests of these models in the predictive responses to proposed therapies will be discussed. Finally, this review will evaluate the involvement of novel secreted biomarkers such as tumor DNA or micro RNA in predicting responses to anti-tumor therapies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Biomarcadores Tumorais/genética , Prognóstico , Microambiente Tumoral
5.
Front Immunol ; 13: 925241, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967413

RESUMO

DCMU [N-(3,4-dichlorophenyl)-N-dimethylurea] or diuron is a widely used herbicide, which can cause adverse effects on human, especially on immune cells, due to their intrinsic properties and wide distribution. These cells are important for fighting not only against virus or bacteria but also against neoplastic cell development. We developed an approach that combines functional studies and miRNA and RNA sequencing data to evaluate the effects of DCMU on the human immune response against cancer, particularly the one carried out by CD8+ T cells. We found that DCMU modulates the expression of miRNA in a dose-dependent manner, leading to a specific pattern of gene expression and consequently to a diminished cytokine and granzyme B secretions. Using mimics or anti-miRs, we identified several miRNA, such as hsa-miR-3135b and hsa-miR-21-5p, that regulate these secretions. All these changes reduce the CD8+ T cells' cytotoxic activity directed against cancer cells, in vitro and in vivo in a zebrafish model. To conclude, our study suggests that DCMU reduces T-cell abilities, participating thus to the establishment of an environment conducive to cancer development.


Assuntos
Herbicidas , MicroRNAs , Animais , Linfócitos T CD8-Positivos/metabolismo , Diurona , Herbicidas/toxicidade , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Peixe-Zebra/genética
6.
Am J Respir Crit Care Med ; 206(3): 295-310, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35486851

RESUMO

Rationale: Brain injury induces systemic immunosuppression, increasing the risk of viral reactivations and altering neurological recovery. Objectives: To determine if systemic immune alterations and lung replication of herpesviridae are associated and can help predict outcomes after brain injury. Methods: We collected peripheral blood mononuclear cells in patients with severe brain injury requiring invasive mechanical ventilation. We systematically searched for respiratory herpes simplex virus (HSV) replications in tracheal aspirates. We also performed chromatin immunoprecipitation sequencing, RNA-sequencing, and in vitro functional assays of monocytes and CD4 T cells collected on Day 1 to characterize the immune response to severe acute brain injury. The primary outcome was the Glasgow Outcome Scale Extended at 6 months. Measurements and Main Results: In 344 patients with severe brain injury, lung HSV reactivations were observed in 39% of the 232 patients seropositive for HSV and independently associated with poor neurological recovery at 6 months (hazard ratio, 1.90; 95% confidence interval, 1.08-3.57). Weighted gene coexpression network analyses of the transcriptomic response of monocytes to brain injury defined a module of 721 genes, including PD-L1 and CD80, enriched for the binding DNA motif of the transcriptional factor Zeb2 and whose ontogenic analyses revealed decreased IFN-γ-mediated and antiviral response signaling pathways. This monocyte signature was preserved in a validation cohort and predicted the neurological outcome at 6 months with good accuracy (area under the curve, 0.786; 95% confidence interval, 0.593-0.978). Conclusions: A specific monocyte signature is associated with HSV reactivation and predicts poor recovery after brain injury. The alterations of the immune control of herpesviridae replication are understudied and represent a novel therapeutic target.


Assuntos
Lesões Encefálicas , Herpes Simples , Herpesvirus Humano 1 , Herpesvirus Humano 1/genética , Humanos , Leucócitos Mononucleares , Monócitos
7.
Front Oncol ; 11: 744679, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34595122

RESUMO

Prostate cancer is the most frequently diagnosed cancer in men and a leading cause of cancer-related death. In recent decades, the development of immunotherapies has resulted in great promise to cure metastatic disease. However, prostate cancer has failed to show any significant response, presumably due to its immunosuppressive microenvironment. There is therefore growing interest in combining immunotherapy with other therapies able to relieve the immunosuppressive microenvironment. Radiation therapy remains the mainstay treatment for prostate cancer patients, is known to exhibit immunomodulatory effects, depending on the dose, and is a potent inducer of immunogenic tumor cell death. Optimal doses of radiotherapy are thus expected to unleash the full potential of immunotherapy, improving primary target destruction with further hope of inducing immune-cell-mediated elimination of metastases at distance from the irradiated site. In this review, we summarize the current knowledge on both the tumor immune microenvironment in prostate cancer and the effects of radiotherapy on it, as well as on the use of immunotherapy. In addition, we discuss the utility to combine immunotherapy and radiotherapy to treat oligometastatic metastatic prostate cancer.

8.
Int J Mol Sci ; 21(17)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825667

RESUMO

Extracellular vesicles (EVs), such as exosomes, are critical mediators of intercellular communication between tumor cells and other cells located in the microenvironment but also in more distant sites. Exosomes are small EVs that can carry a variety of molecules, such as lipids, proteins, and non-coding RNA, especially microRNAs (miRNAs). In thoracic cancers, including lung cancers and malignant pleural mesothelioma, EVs contribute to the immune-suppressive tumor microenvironment and to tumor growth and metastasis. In this review, we discuss the recent understanding of how exosomes behave in thoracic cancers and how and why they are promising liquid biomarkers for diagnosis, prognosis, and therapy, with a special focus on exosomal miRNAs.


Assuntos
Vesículas Extracelulares/patologia , Neoplasias Torácicas/patologia , Microambiente Tumoral , Biomarcadores Tumorais/análise , Ensaios Clínicos como Assunto , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , MicroRNAs , Prognóstico , Neoplasias Torácicas/diagnóstico , Neoplasias Torácicas/imunologia , Neoplasias Torácicas/terapia
9.
J Immunol ; 205(7): 1799-1809, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32839235

RESUMO

CD4+ Foxp3+ regulatory T cells (Treg) are essential to maintain immune tolerance, as their loss leads to a fatal autoimmune syndrome in mice and humans. Conflicting findings have been reported concerning their metabolism. Some reports found that Treg have low mechanistic target of rapamycin (mTOR) activity and would be less dependent on this kinase compared with conventional T cells, whereas other reports suggest quite the opposite. In this study, we revisited this question by using mice that have a specific deletion of mTOR in Treg. These mice spontaneously develop a severe and systemic inflammation. We show that mTOR expression by Treg is critical for their differentiation into effector Treg and their migration into nonlymphoid tissues. We also reveal that mTOR-deficient Treg have reduced stability. This loss of Foxp3 expression is associated with partial Foxp3 DNA remethylation, which may be due to an increased activity of the glutaminolysis pathway. Thus, our work shows that mTOR is crucial for Treg differentiation, migration, and identity and that drugs targeting this metabolism pathway will impact on their biology.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Inflamação/genética , Linfócitos T Reguladores/imunologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Autoimunidade/genética , Diferenciação Celular , Movimento Celular , Metilação de DNA , Fatores de Transcrição Forkhead/genética , Glutamina/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Knockout , Mutação/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/genética
10.
Mol Cancer ; 19(1): 63, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32293453

RESUMO

As the most frequently diagnosed non-skin cancer in men and a leading cause of cancer-related death, understanding the molecular mechanisms that drive treatment resistance in prostate cancer poses a significant clinical need. Radiotherapy is one of the most widely used treatments for prostate cancer, along with surgery, hormone therapy, and chemotherapy. However, inherent radioresistance of tumor cells can reduce local control and ultimately lead to poor patient outcomes, such as recurrence, metastasis and death. The underlying mechanisms of radioresistance have not been fully elucidated, but it has been suggested that miRNAs play a critical role. miRNAs are small non-coding RNAs that regulate gene expression in every signaling pathway of the cell, with one miRNA often having multiple targets. By fine-tuning gene expression, miRNAs are important players in modulating DNA damage response, cell death, tumor aggression and the tumor microenvironment, and can ultimately affect a tumor's response to radiotherapy. Furthermore, much interest has focused on miRNAs found in biofluids and their potential utility in various clinical applications. In this review, we summarize the current knowledge on miRNA deregulation after irradiation and the associated functional outcomes, with a focus on prostate cancer. In addition, we discuss the utility of circulating miRNAs as non-invasive biomarkers to diagnose, predict response to treatment, and prognosticate patient outcomes.


Assuntos
Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , MicroRNAs/genética , Neoplasias da Próstata/patologia , Radiação Ionizante , Animais , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/radioterapia
11.
Sci Rep ; 10(1): 5900, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32246006

RESUMO

Peripheral CD4+CD8+ double positive (DP) T cells are a phenotypically and functionally heterogeneous population depending on their origin and pathologic context. We previously identified among tumour infiltrating lymphocytes in melanoma, a tumour-reactive MHC class-I restricted CD4lowCD8high DP αß T-cell subpopulation with CD4-like function. In this study, we used an in-depth comparative transriptomic analysis of intra-melanoma DP T cells and CD4 and CD8 single positive (SP) T cells, to better comprehend the origin of this DP phenotype, and define the transcriptomic signature of activated DP T cells. We observed that intra-melanoma DP T cells were transcriptome-wise closer to their CD8 SP T-cell counterparts in terms of number of genes differentially expressed (97 in common with CD8 SP T cells and 15 with CD4 SP T cells) but presented hallmarks of a transition to a CD4-like functional profile (CD40LG) with a decreased cytotoxic signature (KLRC1) in favour of an increased cytokine-receptor interaction signature (IL4, IL24, IL17A…). This unleashed CD4-like program could be the results of the observed unbalanced expression of the THPOK/Runx3 transcription factors in DP T cells. Overall, this study allow us to speculate that intra-melanoma DP T cells arise from CD8 SP T cells being reprogrammed to a helper function.


Assuntos
Linfócitos do Interstício Tumoral/imunologia , Melanoma/imunologia , Neoplasias Cutâneas/imunologia , Subpopulações de Linfócitos T/imunologia , Transcriptoma/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Plasticidade Celular/genética , Plasticidade Celular/imunologia , Reprogramação Celular/genética , Reprogramação Celular/imunologia , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Ativação Linfocitária , Linfócitos do Interstício Tumoral/metabolismo , Melanoma/genética , Melanoma/secundário , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Subpopulações de Linfócitos T/metabolismo , Fatores de Transcrição/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
12.
J Immunother Cancer ; 8(1)2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32001504

RESUMO

BACKGROUND: Genome editing offers unique perspectives for optimizing the functional properties of T cells for adoptive cell transfer purposes. So far, PDCD1 editing has been successfully tested mainly in chimeric antigen receptor T (CAR-T) cells and human primary T cells. Nonetheless, for patients with solid tumors, the adoptive transfer of effector memory T cells specific for tumor antigens remains a relevant option, and the use of high avidity T cells deficient for programmed cell death-1 (PD-1) expression is susceptible to improve the therapeutic benefit of these treatments. METHODS: Here we used the transfection of CAS9/sgRNA ribonucleoproteic complexes to edit PDCD1 gene in human effector memory CD8+ T cells specific for the melanoma antigen Melan-A. We cloned edited T cell populations and validated PDCD1 editing through sequencing and cytometry in each T cell clone, together with T-cell receptor (TCR) chain's sequencing. We also performed whole transcriptomic analyses on wild-type (WT) and edited T cell clones. Finally, we documented in vitro and in vivo through adoptive transfer in NOD scid gamma (NSG) mice, the antitumor properties of WT and PD-1KO T cell clones, expressing the same TCR. RESULTS: Here we demonstrated the feasibility to edit PDCD1 gene in human effector memory melanoma-specific T lymphocytes. We showed that PD-1 expression was dramatically reduced or totally absent on PDCD1-edited T cell clones. Extensive characterization of a panel of T cell clones expressing the same TCR and exhibiting similar functional avidity demonstrated superior antitumor reactivity against a PD-L1 expressing melanoma cell line. Transcriptomic analysis revealed a downregulation of genes involved in proliferation and DNA replication in PD-1-deficient T cell clones, whereas genes involved in metabolism and cell signaling were upregulated. Finally, we documented the superior ability of PD-1-deficient T cells to significantly delay the growth of a PD-L1 expressing human melanoma tumor in an NSG mouse model. CONCLUSION: The use of such lymphocytes for adoptive cell transfer purposes, associated with other approaches modulating the tumor microenvironment, would be a promising alternative to improve immunotherapy efficacy in solid tumors.


Assuntos
Imunoterapia Adotiva/métodos , Melanoma/imunologia , Melanoma/terapia , Receptor de Morte Celular Programada 1/deficiência , Linfócitos T Citotóxicos/imunologia , Animais , Linhagem Celular Tumoral , Feminino , Edição de Genes , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Distribuição Aleatória , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Thorac Oncol ; 15(5): 827-842, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31945495

RESUMO

INTRODUCTION: Oncolytic immunotherapy is based on the use of nonpathogenic replicative oncolytic viruses that infect and kill tumor cells exclusively. Recently, we found that the spontaneous oncolytic activity of the Schwarz strain of measles virus (MV) against human malignant pleural mesothelioma (MPM) depends on defects in the antiviral type I interferon (IFN-I) response in tumor cells. METHODS: In this study, we studied three independent human MPM bio-collections to identify the defects in the IFN-I responses in tumor cells. RESULTS: We show that the most frequent defect is the homozygous deletions (HDs) of all the 14 IFN-I genes (IFN-α and IFN-ß) that we found in more than half of MV-sensitive MPM cell lines. These HDs occur together with the HDs of the tumor suppressor gene CDKN2A also located in the 9p21.3 chromosome region. Therefore, the IFN-I-/- MPM cell lines develop a partial and weak IFN-I response when they are exposed to the virus compared with that of normal cells and MV-resistant MPM cell lines. This response consists of the expression of a restricted number of IFN-stimulated genes that do not depend on the presence of IFN-I. In addition, the IFN-I-/- MPM cell lines infected by MV also develop a pro-inflammatory response associated with stress of the endoplasmic reticulum. CONCLUSION: Our study emphasizes the link between HDs of IFN-I encoding genes and the CDKN2A gene in MPM and sensitivity to MV oncolytic immunotherapy.


Assuntos
Interferon Tipo I , Neoplasias Pulmonares , Mesotelioma , Terapia Viral Oncolítica , Vírus Oncolíticos , Linhagem Celular Tumoral , Homozigoto , Humanos , Interferon Tipo I/genética , Vírus do Sarampo/genética , Mesotelioma/genética , Mesotelioma/terapia , Vírus Oncolíticos/genética , Deleção de Sequência
14.
Cancer Immunol Res ; 8(2): 255-267, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31857348

RESUMO

MicroRNAs (miRNA), small noncoding RNAs that regulate gene expression, exist not only in cells but also in a variety of body fluids. These circulating miRNAs could enable intercellular communication. miRNAs are packaged in membrane-encapsulated vesicles, such as exosomes, or protected by RNA-binding proteins. Here, we report that miRNAs included in human melanoma exosomes regulate the tumor immune response. Using microscopy and flow cytometry, we demonstrate that CD8+ T cells internalize exosomes from different tumor types even if these cells do not internalize vesicles as readily as other immune cells. We explored the function of melanoma-derived exosomes in CD8+ T cells and showed that these exosomes downregulate T-cell responses through decreased T-cell receptor (TCR) signaling and diminished cytokine and granzyme B secretions. The result reduces the cells' cytotoxic activity. Using mimics, we found that miRNAs enriched in exosomes-such as Homo sapiens (hsa)-miR-3187-3p, hsa-miR-498, hsa-miR-122, hsa-miR149, and hsa-miR-181a/b-regulate TCR signaling and TNFα secretion. Our observations suggest that miRNAs in melanoma-derived exosomes aid tumor immune evasion and could be a therapeutic target.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Exossomos/genética , Melanoma/imunologia , MicroRNAs/genética , Transdução de Sinais , Neoplasias Cutâneas/imunologia , Evasão Tumoral , Comunicação Celular , Linhagem Celular Tumoral , Células Cultivadas , Exossomos/imunologia , Humanos , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , MicroRNAs/imunologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
15.
Cancers (Basel) ; 11(10)2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658720

RESUMO

Over recent decades, it has become clear that epigenetic abnormalities are involved in the hallmarks of cancer. Histone modifications, such as acetylation, play a crucial role in cancer development and progression, by regulating gene expression, such as for oncogenes or tumor suppressor genes. Therefore, histone deacetylase inhibitors (HDACi) have recently shown efficacy against both hematological and solid cancers. Designed to target histone deacetylases (HDAC), these drugs can modify the expression pattern of numerous genes including those coding for micro-RNAs (miRNA). miRNAs are small non-coding RNAs that regulate gene expression by targeting messenger RNA. Current research has found that miRNAs from a tumor can be investigated in the tumor itself, as well as in patient body fluids. In this review, we summarized current knowledge about HDAC and HDACi in several cancers, and described their impact on miRNA expression. We discuss briefly how circulating miRNAs may be used as biomarkers of HDACi response and used to investigate response to treatment.

16.
Cell Immunol ; 344: 103961, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31472938

RESUMO

Merkel cell carcinoma (MCC) is a rare and aggressive cutaneous cancer, which is immunogenic, regardless of the presence of MCPyV (80% of cases). The identification of MCC-specific epitopes recognized by CD8 T cells is crucial to expand the arsenal of immunotherapeutic treatments. Until now, most efforts focused on the identification of virus-specific epitopes, whereas immune responses directed against shared cellular tumor-specific antigens have not been evidenced. In this study, we measured T-cell responses against viral (n = 3) and tumor antigens (n = 47) from TILs derived from 21 MCC tumors. Virus-specific CD8 T-cell responses dominated MCC-specific immune responses, and we identified two new HLA-peptide complexes derived from the LT antigen, located in a region encompassing 3 previously identified epitopes. Finally, we show that MAGE-A3 antigen, frequently expressed by MCC tumors, was recognized by CD8 TILs from a virus-negative MCC tumor and thus could be a target for immunotherapy in this setting.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Carcinoma de Célula de Merkel/imunologia , Neoplasias Cutâneas/imunologia , Animais , Antígenos de Neoplasias/imunologia , Antígenos Virais/imunologia , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Epitopos de Linfócito T/imunologia , Feminino , Antígenos HLA/imunologia , Humanos , Masculino , Proteínas de Neoplasias/imunologia
18.
Clin Epigenetics ; 10: 57, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29713392

RESUMO

Background: There are many reasons to think that epigenetics is a key determinant of fetal growth variability across the normal population. Since IGF1 and INS genes are major determinants of intrauterine growth, we examined the methylation of selected CpGs located in the regulatory region of these two genes. Methods: Cord blood was sampled in 159 newborns born to mothers prospectively followed during their pregnancy. A 142-item questionnaire was filled by mothers at inclusion, during the last trimester of the pregnancy and at the delivery. The methylation of selected CpGs located in the promoters of the IGF1 and INS genes was measured in cord blood mononuclear cells collected at birth using bisulfite-PCR-pyrosequencing. Results: Methylation at IGF1 CpG-137 correlated negatively with birth length (r = 0.27, P = 3.5 × 10-4). The same effect size was found after adjustment for maternal age, parity, and smoking: a 10% increase in CpG-137 methylation was associated with a decrease of length by 0.23 SDS. Conclusion: The current results suggest that the methylation of IGF1 CpG-137 contributes to the individual variation of fetal growth by regulating IGF1 expression in fetal tissues.


Assuntos
Metilação de DNA , Desenvolvimento Fetal/genética , Fator de Crescimento Insulin-Like I/genética , Análise de Sequência de DNA/métodos , Adulto , Ilhas de CpG , Epigênese Genética , Feminino , Sangue Fetal/química , Sangue Fetal/citologia , Estudos de Associação Genética , Humanos , Recém-Nascido , Masculino , Idade Materna , Gravidez , Terceiro Trimestre da Gravidez , Regiões Promotoras Genéticas , Inquéritos e Questionários , Adulto Jovem
19.
Sci Adv ; 3(6): e1602025, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28630896

RESUMO

Although both growth hormone (GH) and insulin-like growth factor 1 (IGF-1) signaling were shown to regulate life span in lower organisms, the role of GH signaling in human longevity remains unclear. Because a GH receptor exon 3 deletion (d3-GHR) appears to modulate GH sensitivity in humans, we hypothesized that this polymorphism could play a role in human longevity. We report a linear increased prevalence of d3-GHR homozygosity with age in four independent cohorts of long-lived individuals: 841 participants [567 of the Longevity Genes Project (LGP) (8% increase; P = 0.01), 152 of the Old Order Amish (16% increase; P = 0.02), 61 of the Cardiovascular Health Study (14.2% increase; P = 0.14), and 61 of the French Long-Lived Study (23.5% increase; P = 0.02)]. In addition, mega analysis of males in all cohorts resulted in a significant positive trend with age (26% increase; P = 0.007), suggesting sexual dimorphism for GH action in longevity. Further, on average, LGP d3/d3 homozygotes were 1 inch taller than the wild-type (WT) allele carriers (P = 0.05) and also showed lower serum IGF-1 levels (P = 0.003). Multivariate regression analysis indicated that the presence of d3/d3 genotype adds approximately 10 years to life span. The LGP d3/d3-GHR transformed lymphocytes exhibited superior growth and extracellular signal-regulated kinase activation, to GH treatment relative to WT GHR lymphocytes (P < 0.01), indicating a GH dose response. The d3-GHR variant is a common genetic polymorphism that modulates GH responsiveness throughout the life span and positively affects male longevity.


Assuntos
Estatura/genética , Éxons , Hormônio do Crescimento Humano/metabolismo , Longevidade/genética , Receptores da Somatotropina/genética , Deleção de Sequência , Feminino , Estudos de Associação Genética , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Estimativa de Kaplan-Meier , Masculino , Fenótipo , Polimorfismo Genético , Característica Quantitativa Herdável
20.
Sci Rep ; 7: 46311, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28387357

RESUMO

Obesity is a heterogeneous disease with many different subtypes. Epigenetics could contribute to these differences. The aim of this study was to investigate genome-wide DNA methylation searching for methylation marks associated with obesity in children and adolescents. We studied DNA methylation profiles in whole blood cells from 40 obese children and controls using Illumina Infinium HumanMethylation450 BeadChips. After correction for cell heterogeneity and multiple tests, we found that compared to lean controls, 31 CpGs are differentially methylated in obese patients. A greatest proportion of these CpGs is hypermethylated in obesity and located in CpG shores regions. We next focused on severely obese children and identified 151 differentially methylated CpGs among which 10 with a difference in methylation greater than 10%. The top pathways enriched among the identified CpGs included the "IRS1 target genes" and several pathways in cancer diseases. This study represents the first effort to search for differences in methylation in obesity and severe obesity, which may help understanding these different forms of obesity and their complications.


Assuntos
Metilação de DNA , Epigênese Genética , Obesidade Mórbida/genética , Adolescente , Estudos de Casos e Controles , Criança , Ilhas de CpG , Feminino , Genoma Humano , Humanos , Proteínas Substratos do Receptor de Insulina/genética , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...